Random Graphs
 Exercise Sheet 3

Question 1. Let X be a sum of indicator random variables $X=\sum_{A \in \mathcal{A}} \mathbb{1}_{A}$. Show that

$$
\mathbb{E}\left((X)_{k}\right)=\sum_{A_{1}, \ldots, A_{k} \in \mathcal{A} \text { distinct }} \mathbb{P}\left(\bigcap_{i=1}^{k} A_{i}\right) .
$$

Question 2. Suppose that $n p \rightarrow \lambda$ show that

$$
\operatorname{Bin}(n, p) \xrightarrow{d} \operatorname{Po}(\lambda) .
$$

Question 3. Let $p=\frac{c}{n}$ for $c>0$ fixed. Determine the limit of $\mathbb{P}\left(K_{3} \subseteq G_{n, p}\right)$ as $n \rightarrow \infty$.

Question 4. Let $c>0$ be fixed and let p and μ satisfy

$$
e^{-\mu}=\frac{c}{n} \quad \text { and } \quad\binom{n-1}{2} p^{3}=\mu
$$

Show that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\text { Every vertex in } G_{n, p} \text { lies in a triangle }\right)=e^{-c}
$$

(Hint: Show that the number of vertices not lying in a triangle tends to a $\operatorname{Po}(c)$ distribution)

Question 5. Let $p=\frac{c}{n}$ with $c<1$. Show that with high probability there is a component of $G_{n, p}$ which is a tree of size $\Omega(\log n)$.

Question 6. Let $k \in \mathbb{N}$ be fixed. Determine a threshold for having minimum degree at least k. Is this threshold sharp?

